Effect of low environmental salinity on plasma composition and renal function of the Atlantic stingray, a euryhaline elasmobranch.

نویسندگان

  • Michael G Janech
  • Wayne R Fitzgibbon
  • David W Ploth
  • Eric R Lacy
  • Donald H Miller
چکیده

Marine elasmobranchs maintain internal osmolality higher than their external environment, resulting in an osmotic gradient for branchial water uptake. This gradient is markedly increased in low-salinity habitats. The subsequent increase in water uptake presents a challenge to volume homeostasis. The Atlantic stingray is a marine elasmobranch that inhabits a remarkable range of environmental salinities. We hypothesized that the ability of these stingrays to regulate fluid volume in low-salinity environments is due primarily to a renal glomerular and tubular functional reserve. We tested this hypothesis by measuring renal excretory function after a rapid and sustained 50% reduction in the osmolality of the external medium. Atlantic stingrays were maintained in harbor water [control salinity (CS) approximately 850 mosmol/kgH(2)O] for 1 wk. Rays were then either transferred to diluted harbor water [low salinity (LS) approximately 440 mosmol/kgH(2)O] or maintained in CS for a further 24 h. Renal excretory function was markedly higher in the rays subjected to low salinity. Glomerular filtration rate was threefold higher and urine flow rate ninefold higher in the LS group. The clearance of solute-free water was greater, and solute-free water comprised a significantly larger proportion of the urine output for the stingrays transferred to dilute harbor water. We conclude that 1) the kidneys of Atlantic stingrays have a remarkable glomerular and tubular functional reserve, and 2) the marked increase in renal function attenuates the increase in fluid volume when these fish move into low-salinity habitats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch.

Pendrin is an anion exchanger in the cortical collecting duct of the mammalian nephron that appears to mediate apical Cl(-)/HCO3(-) exchange in bicarbonate-secreting intercalated cells. The goals of this study were to determine 1) if pendrin immunoreactivity was present in the gills of a euryhaline elasmobranch (Atlantic stingray, Dasyatis sabina), and 2) if branchial pendrin immunoreactivity w...

متن کامل

Effects of environmental salinity on Na(+)/K(+)-ATPase in the gills and rectal gland of a euryhaline elasmobranch (Dasyatis sabina).

Changes in Na(+)/K(+)-ATPase activity and abundance associated with environmental salinity were investigated in the gills and rectal gland of the Atlantic stingray Dasyatis sabina. Using a ouabain-specific ATPase assay and western blotting, we found that stingrays from fresh water had the highest activity and highest relative abundance of Na(+)/K(+)-ATPase in the gills. Using immunohistochemist...

متن کامل

Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na(+)/K(+)-ATPase.

In the gills of freshwater teleost fishes, vacuolar proton-ATPase (V-H(+)-ATPase) is found on the apical membrane of pavement and chloride (Na(+)/K(+)-ATPase-rich) cells, and is an important transporter for energizing Na(+) uptake and H(+) excretion. In the gills of elasmobranch fishes, the V-H(+)-ATPase has not been extensively studied and its expression in freshwater individuals has not been ...

متن کامل

Molecular and functional characterization of a urea transporter from the kidney of the Atlantic stingray.

In general, marine elasmobranch fishes (sharks, skates, and rays) maintain body fluid osmolality above seawater, principally by retaining large amounts of urea. Maintenance of the high urea concentration is due in large part to efficient renal urea reabsorption. Regulation of renal urea reabsorption also appears to play a role in maintenance of fluid homeostasis of elasmobranchs that move betwe...

متن کامل

Electroreception in the euryhaline stingray, Dasyatis sabina.

This study quantified the electrosensitivity of a euryhaline elasmobranch, the Atlantic stingray (Dasyatis sabina) across a range of salinities. Specimens from a permanent freshwater (FW) population in the St Johns River system, FL, USA, were compared with stingrays from the tidally dynamic Indian River Lagoon in east Florida, USA. Behavioral responses of stingrays to prey-simulating electric s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006